
Little Schemer 
Chapter 4



A lot of Chapter 4 is based on trying to replicate arithmetic operations 
using only the primitives add1, sub1 and zero?  

Note that this isn't more efficient - most arithmetic operations are 
built into processors and they will run faster than any substitutes you 
can define recursively.  But it is interesting to see what you can build 
out of a few operations and it  has consequences for the theory of 
programming languages.  It is also great practice for recursion.



Assuming m and n are non-negative numbers
(define my+ (lambda (m n)

(cond
[(zero? m) n]
[else (add1 (my+ (sub1 m) n)])))

(define my- (lambda (m n)
(cond

[(zero? n) m]
[else (sub1 (my- m (sub1 n)))])))



(define my* (lambda (m n)
(cond

[(zero? n) 0]
[else (my+ m (my* m (sub1 n)))])))

(define my< (lambda (m n)
(cond

[(and (zero? m) (zero? m)) #f]
[(zero? m) #t]
[(zero? n) #f]
[else (my< (sub1 m) (sub1 n))])))



(define my/ (lambda (m n)
(cond

[(my< m n) 0]
[else (add1 (my/ (my- m n) n))])))

(define my% (lambda (m n)
(cond

[(my< m n) m]
[else (my% (my- m n) n)])))

etc.


