
Little Schemer
Chapter 4

A lot of Chapter 4 is based on trying to replicate arithmetic operations
using only the primitives add1, sub1 and zero?

Note that this isn't more efficient - most arithmetic operations are
built into processors and they will run faster than any substitutes you
can define recursively. But it is interesting to see what you can build
out of a few operations and it has consequences for the theory of
programming languages. It is also great practice for recursion.

Assuming m and n are non-negative numbers
(define my+ (lambda (m n)

(cond
[(zero? m) n]
[else (add1 (my+ (sub1 m) n)])))

(define my- (lambda (m n)
(cond

[(zero? n) m]
[else (sub1 (my- m (sub1 n)))])))

(define my* (lambda (m n)
(cond

[(zero? n) 0]
[else (my+ m (my* m (sub1 n)))])))

(define my< (lambda (m n)
(cond

[(and (zero? m) (zero? m)) #f]
[(zero? m) #t]
[(zero? n) #f]
[else (my< (sub1 m) (sub1 n))])))

(define my/ (lambda (m n)
(cond

[(my< m n) 0]
[else (add1 (my/ (my- m n) n))])))

(define my% (lambda (m n)
(cond

[(my< m n) m]
[else (my% (my- m n) n)])))

etc.

